Job Information
Amazon Applied Scientist, Conversational Assistant Services in Boston, Massachusetts
Description
As part of Alexa CAS team, our mission is to provide scalable and reliable evaluation of the state-of-the-art Conversational AI. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), to invent and build end-to-end evaluation of how customers perceive state-of-the-art context-aware conversational AI assistants.
A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, including Supervised Fine-Tuning (SFT), In-Context Learning (ICL), Learning from Human Feedback (LHF), etc.
As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel methods for evaluating conversational assistants. You will analyze and understand user experiences by leveraging Amazon’s heterogeneous data sources and build evaluation models using machine learning methods.
Key job responsibilities
Design, build, test and release predictive ML models using LLMs
Ensure data quality throughout all stages of acquisition and processing, including such areas as data sourcing/collection, ground truth generation, normalization, and transformation.
Collaborate with colleagues from science, engineering and business backgrounds.
Present proposals and results to partner teams in a clear manner backed by data and coupled with actionable conclusions
Work with engineers to develop efficient data querying and inference infrastructure for both offline and online use cases
About the team
Central Analytics and Research Science (CARS) is an analytics, software, and science team within Amazon's Conversational Assistant Services (CAS) organization. Our mission is to provide an end-to-end understanding of how customers perceive the assistants they interact with – from the metrics themselves to software applications to deep dive on those metrics – allowing assistant developers to improve their services. Learn more about Amazon’s approach to customer-obsessed science on the Amazon Science website, which features the latest news and research from scientists across the company. For the latest updates, subscribe to the monthly newsletter, and follow the @AmazonScience handle and #AmazonScience hashtag on LinkedIn, Twitter, Facebook, Instagram, and YouTube.
Basic Qualifications
PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience
Experience building machine learning models or developing algorithms for business application
Experience in patents or publications at top-tier peer-reviewed conferences or journals
Experience with programming languages such as Python, Java, C+- Hands-on experience and deep understanding of the Large Language Models architectures
Preferred Qualifications
Research experience in conversational assistant or LLM evaluation
Publications at peer-reviewed NLP/ML conferences (e.g. ACL, EMNLP, NAACL, NeurIPS, ICLR, ICML, AAAI, etc.)
Hands-on experience with using RLHF models
Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status.
Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visit https://amazon.jobs/content/en/how-we-hire/accommodations for more information. If the country/region you’re applying in isn’t listed, please contact your Recruiting Partner.
Our compensation reflects the cost of labor across several US geographic markets. The base pay for this position ranges from $136,000/year in our lowest geographic market up to $223,400/year in our highest geographic market. Pay is based on a number of factors including market location and may vary depending on job-related knowledge, skills, and experience. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, please visit https://www.aboutamazon.com/workplace/employee-benefits . This position will remain posted until filled. Applicants should apply via our internal or external career site.
Amazon
- Amazon Jobs